Innovation and Expertise in Instrumentation
Inline measurement of the concentration of cutting oils and cooling lubricants with process refractometer IPR

• Schmidt & Haensch GmbH

• Basics...
 a) ... of the iPR Series
 b) ... of the significance of lubricants in process
 c) ... of place of use for lubricant measurement

• Scientific consideration
 a) RI and Temperature
 b) Scales (Brix) and specific lube factor
 c) Real example

• Profitability analysis
Sales and Service Partners all over the world in more than 80 countries:
II) Basics...
... of the iPR-Series:

- **Principle of Process Refractometer: Total reflection**

![Diagram of light path through a YAG prism and optical glass fibre with a photo diode array detecting totally reflected light.]

Advantages:

Detection of **reflected** light (instead of continuous light):

Results completely **independent** of:

- **Colour**
- **Turbidity**
- **Density**
Basics of the significance of lubricants in process

for what reason:
According to **TRGS* 611**, the legislator prescribes regular inspections.

Too low concentrations:
- Enables bacterial growth
- reduces cutting capacity and leads to longer processing times
- poor surface finish
- ineffective lubrication and deposits when welding tools

Too high concentrations:
- means excessive use of lubricant (expensive) and grease contamination (difficult to remove)

Technische Regeln für Gefahrstoffe (TRGS)
Technical Rules for Hazardous Substances
Basics of place of use for lubricant measurement

1. Cooling/cutting
During machining, the metal must be cooled and lubricated.
- via a central system,
- local systems on site

2. Monitoring the quenching liquid:
- the right concentration impacts the quality!

3. Washing
- Clean parts from oil and dirt
- Protection from corrosion during storage
- to ensure that excess fats and oils have been completely removed

4. Rinsing
- for welding,
- be refilled when the concentration value reaches its saturation limit
III) Scientific consideration:

a) RI and Temperature:
III) Scientific consideration:
b) Scales (Brix) and specific lube factor

<table>
<thead>
<tr>
<th>product</th>
<th>concentration</th>
<th>Brix</th>
<th>Temp. [°C]</th>
<th>specific factor</th>
<th>result [wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>weighed in</td>
<td>(measured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxx</td>
<td>2,50</td>
<td>1,42</td>
<td>ca. 23</td>
<td>1,8</td>
<td>2,56</td>
</tr>
<tr>
<td>xxx</td>
<td>5,00</td>
<td>2,82</td>
<td>ca. 23</td>
<td>1,8</td>
<td>5,08</td>
</tr>
<tr>
<td>xxx</td>
<td>10,00</td>
<td>5,45</td>
<td>ca. 23</td>
<td>1,8</td>
<td>9,81</td>
</tr>
</tbody>
</table>
The curve shown here is a **concentration curve over several weeks (measured hourly)** (Central plant **60 m³**) 6% is the minimum value and 7% the maximum value for the investment.

This central system was **operated "badly"** in the period shown here. For the representation of the performance of the refractometer, however, optimally suitable.
III) Scientific consideration:
c) Real example

A continuously operated plant, measured at an hourly rhythm*:

- Bacteria
- pH-value
- concentration

*Measured by rhenus FluidSafe
III) Scientific consideration:
c) Real example

- so-called limit value mode of operation by permanent concentration measurement
- permanently drive the concentration at the still permitted minimum and allow only the smallest tolerances
- saves the user cooling lubricant quantities
- By the automatic permanent concentration measurement no longer sink below the minimum
III) Scientific consideration:
c) Real example
III) Scientific consideration:
c) Real example

Light distribution and gradient for one measurement:
IV) Profitability analysis:

calculated on a **small central plant of 20 m³**
with **10%** lubricant content: (when turning the bath)

<table>
<thead>
<tr>
<th>Price of lubricants 1m³:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product A:</td>
<td>5532 €</td>
</tr>
<tr>
<td>Product B:</td>
<td>5188 €</td>
</tr>
<tr>
<td>Product C:</td>
<td>5700 €</td>
</tr>
</tbody>
</table>

| In plant 2m³ approx.: | 10 000 € |

hazardous material:
external disposal 80-100 €/m³ in GER
approx.: 1800 €

Return of invest:
- with a typical bath life extension of 10 months

0.5< ROI <1 year

is not taken into account:
- cleaning material
- Working hours for cleaning (up to several days)
- possibly broken CNC machine (approx. 120 000 €/machine)
- Production downtime for several days (several thousand to millions/day)